2014年发表论文
2014年发表论文
发布时间:2017-03-16 浏览次数:

1.贾晓峰,2014,美国统计教学:课程设计、师资聘用与就业方向有机结合的启示-以美国

加州州立大学富乐敦分校为例,《统计科学与实践》20148.

2.Jing, B. Y.,Li, C.-X., Chen, J.-Y., Liu, Z. On integrated volatility of Itˆo semimartingales when sampling times are endogenous. Comm. Statist. Theory Methods 43 (2014), no. 24, 5263-5275.

3.Jing, B. Y., Abbas, A., Guo, X.R., and Gao, X. An automated framework for NMR resonance assignment through simultaneous slice picking and spin system forming. J. Boimol NMR (2014), 59, 75-86. DOI 10.1007/s10858-014-9828-0.

4.Jing, B. Y.,Kong, X.B, and W. Zhou.FDR control in multiple testing under non-normality.  Statistica Sinica (2014), 24, 1879-1899.

5.Jing, B. Y.,Liu, Z., and Kong, X.-B.On the estimation of integrated volatility with jumps and microstructure noise.  Journal of Business & Economic Statistics (2014), 32(3), 457-467. (With 
Discussions.)

6.Jing Bing-Yi, Kong Xin-Bing, Zhou Wang (2014). FDR control under nonnormality. (2014). Statistica Sinica. Vol. 24, 1879-1899.

7.Jing Bing-Yi, Liu Zhi, Kong Xin-Bing (2014). Estimating volatility functional with infinitely active jumps. Journal of Business and Economic Statistics. Vol. 32, 457-467.

8.Cao,C.Z., Lin,J.G. and Shi, J.Q.. Diagnostics on nonlinear model with scale mixtures of    skew-normal and first-order autoregressive errors. Statistics(统计学,SCI期刊), 48(5),pp: 1033- 1047,2014.

9.Huang, C. and Lin, J.G.*. Modified maximum spacings method for generalized extreme value distribution and applications in real data analysis. Metrika (计量,SCI期刊), 77,pp:867- 894,2014.

10.Wang,K.Y., Lin,J.G. and Yang,Y.. Asymptotics for Tail Probability of Random Sums with a Heavy-Tailed Number and Dependent Increments. Communications in Statistics-Theory and Methods (统计通讯-理论与方法,SCI期刊), 43,pp: 2595-2604, 2014

11.Xie,F.C., Lin,J.G. and Wei, B.C.. Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics. Journal of Applied Statistics (应用统计杂志,SCI期刊), 41( 6), 1383-1392, 2014

12.Yang,Y., Lin,J.G. and Tan,Z.Q.. The finite-time ruin probability in the presence of Sarmanov dependent financial and insurance risks. Appl. Math. J. Chinese Univ. (SCI期刊), 29(2),pp: 194-204,2014.

13.Zhou,X.C. and Lin,J.G.. COMPLETE q-ORDER MOMENT CONVERGENCE OF MOVING AVERAGE PROCESSES UNDER ϕ-MIXING ASSUMPTIONS. APPLICATIONS OF MATHEMATICS (数学应用, SCI期刊), 1, 6983,2014.

14.Zhou,X.C. and Lin,J.G.. Wavelet Estimator in Nonparametric Regression Model with Dependent Errors Structure. Communications in Statistics-Theory and Methods (统计通讯-理论与方法,SCI期刊), 43,pp: 4707-4722, 2014.

15. Zhou,X.C. and Lin,J.G..Empirical likelihood for varying-coefficient semiparametric mixed- effects errors-in-variables models with longitudinal data. Statistical Methods and Applications(统计方法与应用,SCI期刊), 23, pp: 5169,2014.

16.Zhou,X.C. and Lin,J.G.*.Empirical likelihood inference in mixture of semiparametric varying-coefficient models for longitudinal data with non-ignorable dropout. Statistics(统计学,SCI期刊),48(3),pp:668-684, 2014.

17.王天营,曹婷,沈菊华. 2014年,基于价值取向的大学生就业焦虑心理差异分析,《广西社会科学》2014年第12

18.王天营. 2014年,基于专业差异的大学生就业价值取向实证分析,《广西社会科学》2014年第9

19.王天营,宫芳. 2014年,基于我国高校差异的大学生就业价值取向实证分析,《中国大学生就业》2014年第18

20..王天营. 2014年,中国工业废物统计的现状、不足及改进方法,《中国人口·资源与环境》2014年第5

21.王天营,李玉淑. 2014年,大学生就业价值取向实证研究---基于性别、生源地和年级的差异,《中国大学生就业》2014年第2

22.Yang, Y.Leipus, R. and Siaulys. J., 2014. Closure property and max-sum equivalence of randomly weighted dependent random variables with heavy tails. Statistics and Probability Letters, 91, 162-170 (SCI收录).

23.Yang, Y.Lin, J. and Tan, Z., 2014. The finite-time ruin probability in the presence of Sarmanov dependent financial and insurance risks. Applied Mathematics-A Journal of Chinese Universities, 29, 2, 194-204 (SCI收录).

24.Yang, Y.and Gao, Q., 2014. On closure properties of heavy-tailed distributions for random sums. Lithuanian Mathematical Journal, 54, 3, 366-377 (SCI收录).

25.Yang, Y.Wang, K. and Konstantinides, D.G., 2014. Uniform asymptotics for discounted aggregate claims in dependent risk models. Journal of Applied Probability, 51,669-684 (SCI收录).

26.Yang, Y.2014. Estimate for the finite-time ruin probability in the discrete-time risk model with insurance and financial risks. Communications in Statistics-Theory and Methods, 43, 2094-2104 (SCI, EI收录).

27.Yuhua Xu, Chengrong Xie, Dongbing Tong, Adaptive synchronization for dynamical networks of neutral type with time-delay, Optik. 2014.4 (SCI检索)

28. Yuhua Xu, Yuling Wang, A new chaotic system without linear term and its impulsive synchronizationOptik. 2014.6 (SCI检索)

29. Yuhua Xu, Chengrong Xie, Qing Xia, A kind of binary scaling function projective lag synchronization of chaotic systems with stochastic perturbation, Nonlinear Dynamics. 2014.8 (SCI检索)

30.Yuhua Xu, Yuling Wang, Wuneng Zhou, Jian-an Fang, Stochastic complex networks synchronize to the limit set with adaptive controller and adaptive time-varying delayedMathematical Methods in the Applied Sciences. 2014.10 (SCI检索)

31.Qingwu Gao *, Xiuzhu Yang, 2014Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest, Journal of Mathematical Analysis and Applications 419, 1193-1213. (SCI二区)

32.Qingwu Gao *, Di Bao, 2014, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest, Journal of the Korean Mathematical Society 51(4), 735-749. (SCI)

33.Qingwu Gao*, Na Jin, Houcai Shen, 2014, Asymptotic behavior of the finite time ruin probability with pairwise quasi asymptotically independent claims and constant interest force, Rocky Mountain Journal of Mathematics 44(5), 1503-1528. (SCI)

34.Tao Jiang, Qingwu Gao, Yuebao Wang*, 2014, Max-sum equivalence of conditionally dependent random variables, Statistics and Probability Letters 84: 60-66.SCI

35.Yang Yang*, Qingwu Gao, 2014, On closure properties of heavy-tailed distributions for random sums, Lithuanian Mathematical Journal 54(3), 366-377.SCI

36.Liu Guangying, Tang Jiashan and Zhang Xinsheng. Central Limit Theorems for Power Variations of Gaussian Integral Processes with Jumps. SCIENCE CHINA Mathematics, 57(8): 1671-1685, 2014.

37.刘广应,唐家山,张新生.带跳分数维积分过程幂变差的渐近行为.数学物理学报,34 (4): 925-937,2014

38.刘广应,吴海月.金融高频数据波动率度量比较研究——基于ARFIMA模型的VaR视角.上海金融, 2014年第1期84-88

39.Yan, L., Liu, J., & Chen, C. (2014). The generalized quadratic covariation for fractional Brownian motion with Hurst index less than 1/2. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 17(04), 1450030.

40.Yan, L., Gao, B., & Liu, J. (2014). The BouleauYor identity for a bi-fractional Brownian motion. Stochastics An International Journal of Probability and Stochastic Processes, 86(3), 382-414.

41.Liu, J., & Yan, L. (2014). On a semilinear stochastic partial differential equation with double-parameter fractional noises. Science China Mathematics, 57(4), 855-872.

42.Sun, X., & Liu, J. (2014). Weak convergence for a class of stochastic fractional equations driven by fractional noise. Advances in Mathematical Physics, 2014.

43.陆敏,2014,基于GM(11)模型的我国若干节能减排政策评价研究,《生态经济》2014年第9

44.陆敏,2014,碳排放约束目标下的中国省际潜在支出分析,《系统工程》2014年第2

45.Xin Ma* and Xiao Sun, Sequence-based predictor of ATP-binding residues using random forest and mRMR-IFS feature selection, Journal of Theoretical Biology, 360: 59-66, 2014. (SCI

46.Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus,2014.2,Abstract and Applied Analysis.(SCI)3/3

47.Wenze Shao, Haisong Deng, Zhihui Wei. Kullback-Leibler divergence based composite prior modeling for Bayesian super-resolution. Journal of Scientific Computing, 2014, 60(1): 60-78. (SCI)

48.王伟,苏小囡,赵奇杰,马尔可夫调制的跳扩散过程下远期生效看涨期权的定价.应用概率统计,第6期:587-597页,2014.

49.Wang, J., Liu, R., Cheng, F. and Yang, L. (2014). Oracally efficient estimation of autoregressive error distribution with simultaneous confidence band. Annals of Statistics. 42, 654-668.